
Halting	Measures	and	
Termination	Arguments

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.2

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

General	Recursion	is	more	powerful	
than	structural	decomposition

• Functions	written	using	structural	decomposition	
are	guaranteed	to	halt	with	an	answer,	but	
general	recursion	allows	you	to	write	functions	
that	don't	always	halt.

• So	every	time	we	write	a	function	using	general	
recursion,	we	need	to	provide	a	termination	
argument that	explains	why	the	function	really	
does	halt
– or	else	warn	the	user	that	it	may	not	halt.
– easiest	way	to	make	a	termination	argument	is	by	
supplying	a	halting	measure.

2

Halting	Measure	(1)

• New	required	piece	of	the	function	header.
• The	halting	measure	is	a	way	of	explaining	
how	each	of	the	subproblems are	easier	than	
the	original

• A	halting	measure	is	an	integer-valued	
quantity	that	can't	be	less	than	zero,	and	
which	decreases at	each	recursive	call	in	your	
function.

3

Halting	Measure	(2)

• Since	the	measure	is	integer-valued,	and	it	
decreases	at	every	recursive	call,	your	
function	can't	make	more	recursive	calls	than	
what	the	halting	measure	says.

• In	particular,	it	must	halt!

4

Possible	halting	measures

• the	value	of	a	NonNegInt argument
• the	size	of	an	s-expression
• the	length	of	a	list
• the	number	of	elements	of	some	set
• a	non-negative	integer	quantity	that	depends	
on	one	of	the	quantities	above

5

Termination	Argument

• For	each	function	that	uses	general	recursion	
you	need	to	give
– your	proposed	halting	measure
– an	argument	that	your	proposed	halting	measure	
really	is	a	halting	measure	for	your	function.	

6

Halting	Measure	for	decode

• Proposed	halting	measure:	the	size	of	sexp.
• Termination	argument:
– the	size	of	an	sexp is	always	a	non-negative	
integer.

– If	sexp is	not	a	number,	then	(second	sexp)	and	
(third	sexp)	each	have	strictly	smaller	size	than	
sexp.

• So	(size	sexp)	is	a	halting	measure	for	
decode.

7

There	are	many	ways	to	define	 the	size	of	an	
Sexp.		You	could,	for	example,	define	it	as	the		
total	number	of	characters	needed	 to	print	
out	the	sexp.		Can	you	write	this	as	a	
function?

Halting	Measure	for	merge-sort
• Proposed	halting	measure:		(length	lst)
• Termination	argument:
– (length lst) is	always		a	non-negative	integer.
– At	each	recursive	call,	(length lst) ≥	2
– If	(length lst) ≥	2,	then	

(length (even-elements lst)) and	
(length (even-elements (rest lst)))

are	both		strictly	less	than	(length lst).
• So (length lst) is	a	halting	measure	for	merge-
sort.

8

Halting	Measure	for	merge

• Proposed	halting	measure:	
– (length lst1) + (length lst2)

• Termination	argument:
– (length lst1) and	(length lst2) are	both	
always	non-negative,	so	their	sum	is	non-negative.

– At	each	recursive	call,	either	lst1 or	lst2 becomes	
shorter,	so	either	way	the	sum	of	their	lengths	is	
shorter.

• So	(length lst1) + (length lst2) is	a	
halting	measure	for	merge.

9

What	do	I	need	to	deliver?

• You	must	write	down	a	halting	measure	for	
each	function	that	uses	general	recursion.

• You	don't	have	to	write	down	the	termination	
argument,	but	you	should	be	prepared	to	
explain	it	at	codewalk.

• If	your	function	does	not	terminate	on	some	
input	problems,	you	should	write	down	a	
description	of	the	inputs	on	which	your	
program	fails	to	halt.

10

A	Numeric	Example

fib : NonNegInt -> NonNegInt
(define (fib n)

(cond
[(= n 0) 1]
[(= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))]))

Here's	the	standard	recursive	definition	
of	the	fibonacci function

A	Numeric	Example	(2)

fib : NonNegInt -> NonNegInt
(define (fib n)

(cond
[(= n 0) 1]
[(= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))]))

Let's	check	to	see	that	the	recursive	calls	obey	the	
contract.

When	we	get	to	the	recursive	calls,	if	n	is	a	
NonNegInt,	and	it	is	not	0	or	1,	then	 it	must	be	
greater	than	or	equal	to	2,	so	n-1 and	n-2 are	both	
NonNegInt's.

So	the	recursive	calls	don't	violate	the	contract.

Halting	measure	for	fib

• Proposed	halting	measure:	n	
• Termination	argument
– n	is	always	a	non-negative	integer	(by	the	
contract)

– At	each	recursive		call,	n-1 and	n-2	are	both	non-
negative		integers,		and	each	is	strictly	smaller	
than	n.	So n decreases	at	each	recursive	call.

• So	n is	a	halting	measure	for	fib.

13

What	about	(fib	-1)?

(fib -1)
= (+ (fib -2) (fib -3))
= (+ (+ (fib -3) (fib -4))

(+ (fib -4) (fib -5))
= etc.
Oops!		This	doesn't	terminate!

What	does	this	tell	us?
• First,	it	tells	us	that	using	general	recursion	we	can	
write	functions	that	may	not	terminate.

• We	couldn't	do	this	using	structural	decomposition.
• Is	there	something	wrong	with	our	termination	
argument?

• No,	because	the	termination	argument	only	says	what	
happens	when	n is	a	NonNegInt

• -1	is	a	contract	violation,	so	anything	could	happen.
• If	we	want	to	make	the	contract	Int ->	Int ,	then	we	
need	to	document	the	non-termination	behavior:

15

Documenting	non-termination

fib : Integer -> Integer
Halting Measure:

If n is non-negative, then n is a
halting measure.

If n is negative, the function
fails to halt.

16

General	Recursion	vs.	Structural	
Decomposition

• Structural	decomposition	is	a	special	case	of	
General	Recursion:		it's	a	standard	recipe	for	
finding	subproblems that	are	guaranteed	to	be	
easier.
– A	field	is	always	smaller	than	the	structure	it’s	
contained	in.

• For	general	recursion,	you	must	always	explain	in	
what	way	the	new	problems	are	easier.

• Use	structural	decomposition	when	you	can,	
general	recursion	when	you	need	to.

• Always	use	the	simplest	tool	that	works!

17

In	the	definition	of	function	f :

(... (f (rest lst))) is	structural
(f (... (rest lst))) is	general

18

You	can	usually	tell	just	from	the	function	 definition	 whether	it	is	structural	
or	general	recursion.	

In	the	first	example	here,	f is	called	on	 (rest	lst),	which	is	a	component	 of	
the	list,	and	is	therefore	smaller	than	lst.	This	is	what	the	list	template	tells	
us.

In	the	second	example,	f is	being	called	some	other	value	that	happens	 to	
be	computed	from	 (rest	lst),	but	that’s	not	the	same	as	(rest	lst).		So	this	
example	is	general	recursion.		There’s	no	telling	how	big	(... (rest
lst)) is.	If	we	call	f	on	it,	we’d	better	have	a	termination	argument	 to	
ensure	that	it	has	a	smaller	halting	measure.

Summary	(1)
• We've	introduced	general	recursion.
• Solve	the	problem	by	combining	solutions	to	easier	
subproblems.

• Must	propose	a	halting	measure	that	documents	the	
"difficulty"	of	each	instance	of	the	problem.

• Must	give	a	termination	argument	that	explains	why	
the	proposed	halting	measure	really	is	a	halting	
measure	for	this	function.

• Structural	decomposition	is	a	special	case	where	the	
data	definition	guarantees	the	subproblem is	easier.

• Always	use	the	simplest	tool	that	works!

19

Summary	(2)

You	should	now	be	able	to
• Identify	general	recursion	and	distinguish	it	
from	structural	decomposition.

• Explain	the	difference	between	a	halting	
measure	and	a	termination	argument.

20

Next	Steps

• Study	the	examples	of	general	recursion	in	08-
1-decode.rkt,	08-2-merge-sort.rkt,	and		08-3-
fib.rkt	in	the	Examples	folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	8.2.
• Go	on	to	the	next	lesson

21

